Chapter 1: Units and Measurements

EXERCISES [PAGES 14 - 15]

Exercises | Q 1. (i) | Page 14

Choose the correct option.

[L¹M¹T⁻¹] is the dimensional formula for

- 1. Velocity
- 2. Acceleration
- 3. Force
- 4. Work

SOLUTION

[L¹M¹T⁻¹] is the dimensional formula for force.

Exercises | Q 1. (ii) | Page 14

Choose the correct option.

The error in the measurement of the sides of a rectangle is 1%. The error in the measurement of its area is

 $\frac{1}{2}\%$

None of the above

SOLUTION

The error in the measurement of the sides of a rectangle is 1%. The error in the measurement of its area is $\underline{2\%}$.

Explanation:

$$A = l \times b$$
$$\therefore \frac{\triangle A}{A} = \frac{\triangle l}{l} + \frac{\triangle b}{b} = 1\% + 1\% = 2\%$$

Exercises | Q 1. (iii) | Page 14

Choose the correct option.

A light year is a unit of _____.

- 1. Time
- 2. Mass
- 3. Distance
- 4. Luminosity

SOLUTION

A light year is a unit of distance.

Exercises | Q 1. (iv) | Page 14

Choose the correct option.

Dimensions of kinetic energy are the same as that of _____.

- 1. Force
- 2. Acceleration
- 3. Work
- 4. Pressure

SOLUTION

Dimensions of kinetic energy are the same as that of work.

Exercises | Q 1. (v) | Page 14

Choose the correct option.

Which of the following is not a fundamental unit?

- 1. cm
- 2. kg
- 3. centigrade
- 4. volt

SOLUTION

volt

Exercises | Q 2. (i) | Page 14

Answer the following question.

Star A is farther than star B. Which star will have a large parallax angle?

1. 'b' is constant for the two stars

$$\therefore \theta = \frac{1}{D}$$

2. As star A is farther i.e., $D_A > D_B$

$$\Rightarrow \theta_A < \theta_B$$

Hence, star B will have a larger parallax angle than star A.

Exercises | Q 2. (ii) | Page 14

Answer the following question.

$$l\sqrt{l/g}$$
, I

What are the dimensions of the quantity vacceleration due to gravity?

being the length, and g the

Quantity = $1 \times \sqrt{\frac{l}{g}}$ (i) gravitational acceleration, g = $\frac{\text{velocity}}{\text{time}}$ \therefore g = $\frac{\text{distance}}{\text{time} \times \text{time}}$ Substituting in equation (i),

Quantity =
$$l \times \sqrt{\frac{l \times \text{time}^2}{\text{distance}}}$$

: Dimensional formula of quantity

$$= [\mathbf{L}] \times \frac{\left[\mathbf{L}^{1/2}\right] \left[\mathbf{T}^{2 \times 1/2}\right]}{\mathbf{L}^1/2} = [\mathbf{L}] \times \left[\mathbf{T}^1\right] = \left[\mathbf{L}^1 \mathbf{T}^1\right]$$

Exercises | Q 2. (iii) | Page 14

Define absolute error.

SOLUTION

- 1. For a given set of measurements of a quantity, the magnitude of the difference between mean value (Most probable value) and each individual value is called absolute error (Δa) in the measurement of that quantity.
- 2. absolute error = |mean value measured value|

$$\begin{split} \Delta a_1 &= |a_{mean} - a_1| \\ \text{Similarly, } \Delta a_2 &= |a_{mean} - a_2|, \text{.....} \Delta a_n = |a_{mean} - a_n| \end{split}$$

Exercises | Q 2. (iii) | Page 14

Define Mean absolute error.

For a given set of measurements of the same quantity, the arithmetic mean of all the absolute errors is called mean absolute error in the measurement of that physical quantity.

$$riangle \mathbf{a}_{ ext{mean}} = rac{ riangle \mathbf{a}_1 + riangle \mathbf{a}_2 + + riangle \mathbf{a}_{ ext{n}}}{\mathbf{n}} = rac{1}{\mathbf{n}} \sum_{i=1}^n riangle a_i$$

Exercises | Q 2. (iii) | Page 14

Define mean percentage error.

SOLUTION

The relative error represented by percentage (i.e., multiplied by 100) is called the percentage error.

 $\text{Percentage error} = \frac{\bigtriangleup a_{mean}}{a_{mean}} \times 100\%$

Exercises | Q 2. (iv) | Page 14

Answer the following question.

Describe what is meant by significant figures and order of magnitude.

SOLUTION

1. Significant figures in the measured value of a physical quantity is the sum of reliable digits and the first uncertain digit.

OR

The number of digits in a measurement about which we are certain, plus one additional digit, the first one about which we are not certain is known as significant figures or significant digits.

- 2. The larger the number of significant figures obtained in a measurement, the greater is the accuracy of the measurement. The reverse is also true.
- 3. If one uses the instrument of smaller least count, the number of significant digits increases.

Rules for determining significant figures:

- 1. All the non-zero digits are significant, for example, if the volume of an object is 178.43 cm³, there are five significant digits which are 1,7,8,4 and 3.
- 2. All the zeros between two nonzero digits are significant, eg., m = 165.02 g has 5 significant digits.

Get More Learning Materials Here : 📕

- 3. If the number is less than 1, the zero/zeroes on the right of the decimal point and to the left of the first nonzero digit are not significant e.g. in <u>0.00</u>1405, the underlined zeroes are not significant. Thus the above number has four significant digits.
- 4. The zeroes on the right-hand side of the last nonzero number are significant (but for this, the number must be written with a decimal point), e.g. 1.500 or 0.01500 both have 4 significant figures each.
 On the contrary, if a measurement yields length L given as L = 125 m = 12500 cm = 125000 mm, it has only three significant digits.

Exercises | Q 2. (v) | Page 14

Answer the following question.

If the measured values of the two quantities are A $\pm \Delta A$ and B $\pm \Delta B$, ΔA and ΔB being the mean absolute errors. What is the maximum possible error in A $\pm B$?

SOLUTION

The maximum possible error in $(A \pm B)$ is $(\Delta A + \Delta B)$.

Exercises | Q 2. (v) | Page 14

Answer the following question.

Show that if Z =
$$\frac{A}{B}$$
, $\frac{\triangle Z}{Z} = \frac{\triangle A}{A} + \frac{\triangle B}{B}$

SOLUTION

Errors in divisions:

Suppose, Z = $\frac{A}{B}$ and measured values of A and B are (A ± Δ A) and (B ± Δ B) then, Z ± Δ Z = $\frac{A \pm \Delta A}{B \pm \Delta B}$ $\therefore Z\left(1 \pm \frac{\Delta Z}{Z}\right) = \frac{A[1 \pm (\Delta A/A)]}{B[1 \pm (\Delta B/B)]}$ $= \frac{A}{B} \times \frac{1 \pm (\Delta A/A)}{1 \pm (\Delta B/B)}$

As,
$$\frac{\triangle B}{B} \ll 1$$
, expanding using Binomial theorem,

$$Z\left(1 \pm \frac{\triangle Z}{Z}\right) = Z\left(1 \pm \frac{\triangle A}{A}\right) \times \left(1 \mp \frac{\triangle B}{B}\right) \dots \left(\because \frac{A}{B} = Z\right)$$

$$\therefore 1 \pm \frac{\Delta Z}{Z} = \pm \frac{\triangle A}{A} \mp \frac{\triangle B}{B} \pm \frac{\triangle A}{A} \times \frac{\triangle B}{B}$$
Ignoring term $\frac{\triangle A}{A} \times \frac{\triangle B}{B}, \frac{\triangle Z}{Z} = \pm \frac{\triangle A}{A} \mp \frac{\triangle B}{B}$
This gives four possible values of $\frac{\triangle Z}{Z}$ as

$$\left(\pm \frac{\triangle A}{A} - \frac{\triangle B}{B}\right), \left(\pm \frac{\triangle A}{A} \pm \frac{\triangle B}{B}\right), \left(-\frac{\triangle A}{A} - \frac{\triangle B}{B}\right) \text{ and } \left(-\frac{\triangle A}{A} \pm \frac{\triangle B}{B}\right)$$

$$\therefore \text{ Maximum relative error of } \frac{\triangle Z}{Z} \pm \left(\frac{\triangle A}{A} \pm \frac{\triangle B}{B}\right)$$

Thus, when two quantities are divided, the maximum relative error in the result is the sum of relative errors in each quantity.

Exercises | Q 2. (vi) | Page 14

Answer the following question.

Derive the formula of the kinetic energy of a particle having mass 'm' and velocity 'v', using dimensional analysis.

SOLUTION

The kinetic energy of a body depends upon mass (m) and velocity (v) of the body.

Let K.E. $\propto m^x v^y$

 $\therefore \text{ K.E.} = \text{km}^{\text{x}} \text{ v}^{\text{y}} \quad(1)$

where, k = dimensionless constant of proportionality. Taking dimensions on both sides of equation (1),

$$\begin{split} \left[\mathbf{L}^{2} \mathbf{M}^{1} \mathbf{T}^{-2} \right] &= \left[\mathbf{L}^{0} \mathbf{M}^{1} \mathbf{T}^{0} \right]^{x} \left[\mathbf{L}^{1} \mathbf{M}^{0} \mathbf{T}^{-1} \right]^{y} \\ &= \left[\mathbf{L}^{0} \mathbf{M}^{x} \mathbf{T}^{0} \right] \left[\mathbf{L}^{y} \mathbf{M}^{0} \mathbf{T}^{-y} \right] \\ &= \left[\mathbf{L}^{0+y} \mathbf{M}^{x+0} \mathbf{T}^{0-y} \right] \\ \left[\mathbf{L}^{2} \mathbf{M}^{1} \mathbf{T}^{-2} \right] &= \left[\mathbf{L}^{y} \mathbf{M}^{x} \mathbf{T}^{-y} \right] \dots (2) \end{split}$$

Equating dimensions of L, M, T on both sides of equation (2),

$$x = 1$$
 and $y = 2$

Substituting x, y in equation (1), we have

 $K.E. = kmv^2$

Exercises | Q 3. (i) | Page 14

Solve the numerical example.

The masses of two bodies are measured to be 15.7 ± 0.2 kg and 27.3 ± 0.3 kg. What is the total mass of the two and the error in it?

SOLUTION

Given: $A \pm \Delta A = 15.7 \pm 0.2$ kg and $B \pm \Delta B = 27.3 \pm 0.3$ kg.

To find: Total mass (Z), and total error (ΔZ)

Formulae: i. Z = A + Bii. $\pm \Delta Z = \pm \Delta A \pm \Delta B$

Calculation: From formula (i),

Z = 15.7 + 27.3 = 43 kg

From formula (ii),

$$\pm \Delta Z = (\pm 0.2) + (\pm 0.3)$$

 $= \pm (0.2 + 0.3)$

= ± 0.5 kg

Total mass is 43 kg and total error is ± 0.5 kg.

Exercises | Q 3. (ii) | Page 14

Solve the numerical example.

The distance travelled by an object in time (100 ± 1) s is (5.2 ± 0.1) m. What are the speed and its maximum relative error? SOLUTION

Given: Distance (D $\pm \Delta$ D) = (5.2 \pm 0.1) m,

time $(t \pm \Delta t) = (100 \pm 1) s.$

To find: Speed (v), the maximum relative error $\left(\frac{\triangle \mathbf{v}}{\mathbf{v}}\right)$

Formulae: i. v = $\frac{D}{+}$ ii. $\frac{\bigtriangleup v}{v} = \pm \left(\frac{\bigtriangleup D}{D} + \frac{\bigtriangleup t}{t}\right)$

Calculation: From formula (i),

v =
$$\frac{5.2}{100} = 0.052$$
 m/s

From formula (ii),

$$\frac{\triangle \mathbf{v}}{\mathbf{v}} = \pm \left(\frac{0.1}{5.2} + \frac{1}{100}\right)$$
$$= \pm \left(\frac{1}{52} + \frac{1}{100}\right) = \pm \frac{19}{650}$$

The speed is 0.052 m/s and its maximum relative error is ± 0.029 m/s.

Exercises | Q 3. (iii) | Page 14

Solve the numerical example.

An electron with charge e enters a uniform magnetic field \overrightarrow{B} with a velocity \overrightarrow{v} . The velocity is perpendicular to the magnetic field. The force on the charge is given by $\left|\overrightarrow{F}\right|$ = B e v.

Obtain the dimensions of \overrightarrow{B} .

Get More Learning Materials Here : 📕

🕀 www.studentbro.in

Given:
$$\left| \overrightarrow{\mathbf{F}} \right| = B e v$$

Considering only magnitude, given equation is simplified to,

$$F = B e v$$

$$\therefore B = \frac{F}{e v}$$
but, F = ma = m × $\frac{\text{distance}}{\text{time}^2}$

$$\therefore [F] = [M^1] \times \left[\frac{L^1}{T^2}\right]$$

$$= [L^1 M^1 T^{-2}]$$

Electric charge, e = current × time

$$\begin{array}{l} \therefore \ [e] = [l^{1}T^{1}] \\ \text{Velocity } v = \displaystyle \frac{\text{distance}}{\text{time}} \\ \therefore \ [v] = \left[\displaystyle \frac{L}{T} \right] = \left[L^{1}T^{-1} \right] \\ \text{Now, } [B] = \left[\displaystyle \frac{F}{e \ v} \right] \\ = \displaystyle \frac{\left[L^{1}M^{1}T^{-2} \right]}{\left[T^{1}I^{1} \right] \left[L^{1}T^{-1} \right]} \\ \therefore \ [B] = \left[L^{0}M^{1}T^{-2}I^{-1} \right] \\ \textbf{Exercises } | \textbf{Q 3. (iv) } | \textbf{Page 14} \end{array}$$

Solve the numerical example.

A large ball 2 m in radius is made up of a rope of square cross-section with edge length 4 mm. Neglecting the air gaps in the ball, what is the total length of the rope to the nearest order of magnitude?

SOLUTION

Volume of ball = Volume enclosed by rope.

 $\frac{4}{3}\pi$ (radius)³ = Area of cross-section of rope × length of rope.

 \therefore length of rope I = $\frac{\frac{4}{3}\pi r^3}{A}$

Given: r = 2 m and

Area = A =
$$4 \times 4 = 16 \text{ mm}^2 = 16 \times 10^{-6} \text{ m}^2$$

$$\therefore | = \frac{4 \times 3.142 \times 2^3}{3 \times 16 \times 10^{-6}}$$
$$= \frac{3.142 \times 2}{3} \times 10^6 \text{m}$$
$$\approx 2 \times 10^6 \text{ m}.$$

 \therefore Total length of rope to the nearest order of magnitude = 10^6 m = 10^3 km

Exercises | Q 3. (v) | Page 14

Solve the numerical example.

Nuclear radius R has a dependence on the mass number (A) as R =1.3 × 10^{-16} A^{1/3} m. For a nucleus of mass number A = 125, obtain the order of magnitude of R expressed in the meter.

SOLUTION

 $R = 1.3 \times 10^{-16} \times A^{1/3} m$ For A = 125 $R = 1.3 \times 10^{-16} \times (125)^{1/3}$ $= 1.3 \times 10^{-16} \times (5^3)^{1/3}$ $= 1.3 \times 10^{-16} \times 5$

 $= 6.5 \times 10^{-16}$

= 0.65 × 10⁻¹⁵ m

 \therefore Order of magnitude = - 15

Exercises | Q 3. (vi) | Page 14

Solve the numerical example.

In a workshop, a worker measures the length of a steel plate with Vernier calipers having a least count 0.01 cm. Four such measurements of the length yielded the following values: 3.11 cm, 3.13 cm, 3.14 cm, 3.14 cm. Find the mean length, the mean absolute error, and the percentage error in the measured value of the length.

SOLUTION

Given: a₁ = 3.11 cm, a₂ = 3.13 cm,

 $a_3 = 3.14$ cm, $a_4 = 3.14$ cm

Least count L.C. = 0.01 cm.

To find: i. Mean length (a_{mean})

ii. Mean absolute error $(\triangle a_{mean})$

iii. Percentage error.

Formulae: 1. $a_{mean} = \frac{a_1 + a_2 + a_3 + a_4}{4}$ 2. $\triangle a_n = |a_{mean} - a_n|$ 3. $\triangle a_{mean} = \frac{\triangle a_1 + \triangle a_2 + \triangle a_3 + \triangle a_4}{4}$ 4. Percentage error $= \frac{\triangle a_{mean}}{a_{mean}} \times 100$ Calculation: From formula (i), $a_{mean} = \frac{3.11 + 3.13 + 3.14 + 3.14}{4} = 3.13$ cm

From formula (ii),

 $\begin{array}{l} \bigtriangleup a_1 = |3.13 - 3.11| = 0.02 \text{cm} \\ \bigtriangleup a_2 = |3.13 - 3.13| = 0 \\ \bigtriangleup a_3 = |3.13 - 3.14| = 0.01 \text{ cm} \\ \bigtriangleup a_4 = |3.13 - 3.14| = 0.01 \text{ cm} \\ \text{From formula (iii),} \\ a_{mean} = \frac{0.02 + 0 + 0.01 + 0.01}{4} = 0.01 \text{ cm} \\ \text{From formula (iii),} \\ \% \text{ error } = \frac{0.01}{3.13} \times 100 \\ = \frac{1}{3.13} = 0.3196 \dots \text{(using reciprocal table)} \\ = 0.32 \% \\ \text{i. Mean length is } 3.13 \text{ cm}. \end{array}$

ii. Mean absolute error is **0.01 cm**.

iii. Percentage error is 0.32 %.

Exercises | Q 3. (vii) | Page 14

Solve the numerical example.

Find the percentage error in kinetic energy of a body having mass 60.0 ± 0.3 g moving with a velocity of 25.0 ± 0.1 cm/s.

Given: m = 60.0 g, v = 25.0 cm/s, Δm = 0.3 g, Δv = 0.1 cm/s

To find: Percentage error in E

Formula: Percentage error in E

$$=\left(rac{ riangle m}{m}+2rac{ riangle v}{v}
ight) imes100\%$$

Calculation: From formula,

Percentage error in E =
$$\left(\frac{0.3}{60.0} + 2 \times \frac{0.1}{25.0}\right) \times 100\%$$

= 1.3 %

The percentage error in energy is 1.3%.

Exercises | Q 3. (viii) | Page 15

Solve the numerical example.

In Ohm's experiments, the values of the unknown resistances were found to be 6.12 Ω , 6.09 Ω , 6.22 Ω , 6.15 Ω . Calculate the (mean) absolute error, relative error, and percentage error in these measurements.

SOLUTION

Given: a₁ = 6.12 Ω, a₂ = 6.09 Ω, a₃ = 6.22 Ω, a₄ = 6.15 Ω

To find: i. Absolute error (Δa_{mean})

ii. Relative error

iii. Percentage error

Formulae: 1. $a_{mean} = rac{a_1+a_2+a_3+a_4}{4}$

2.
$$\Delta \mathbf{a}_{n} = |\mathbf{a}_{mean} - \Delta \mathbf{a}|$$

3. $\Delta \mathbf{a}_{mean} = \frac{\Delta \mathbf{a}_{1} + \Delta \mathbf{a}_{2} + \Delta \mathbf{a}_{3} + \Delta \mathbf{a}_{4}}{4}$

4. Relative error = $\frac{\Delta a_{mean}}{a_{mean}}$ 5. Percentage error = $\frac{\Delta a_{mean}}{a_{mean}} \times 100\%$ **Calculation:** From formula (i), $a_{mean} = \frac{6.12 + 6.09 + 6.22 + 6.15}{4}$ $= \frac{24.58}{4} = 6.145 \text{ cm}$

Exercises | Q 3. (ix) | Page 15

Solve the numerical example.

An object is falling freely under the gravitational force. Its velocity after travelling a distance h is v. If v depends upon gravitational acceleration g and distance, prove with the dimensional analysis that $v = \sqrt{gh}$ where k is a constant.

SOLUTION

Given = v = $k\sqrt{gh}$

Quantity	Formula	Dimension
Velocity (v)	$\frac{\text{Distance}}{\text{Time}}$	$\left[\frac{L}{T}\right] = \left[L^1T^{-1}\right]$
Height (h)	Distance	[L ¹]
Gravitational acceleration (g)	$\frac{\text{Distance}}{(\text{Time})^2}$	$\left[\frac{L}{T^2}\right] = \left[L^1T^{-2}\right]$

k being constant is assumed to be dimensionless.

Dimensions of L.H.S. = $[v] = [L^{1}T^{-1}]$ Dimension of R.H.S. = $\left[\sqrt{gh}\right]$ = $[L^{1}T^{-2}]^{1/2} \times [L^{1}]^{1/2}$ = $[L^{1}T^{-2}]^{1/2}$ = $[L^{1}T^{-1}]$ As, [L.H.S.] = [R.H.S.], $\Rightarrow v = k\sqrt{gh}$ is dimensionally correct equation.

Exercises | Q 3. (x) | Page 15

Solve the numerical example.

 $\begin{array}{l} v = at + \displaystyle \frac{b}{t+c} + v_0 \\ & \text{ is a dimensionally valid equation. Obtain the dimensional formula for a, b and c where v is velocity, t is time and v_0 is initial velocity. \end{array}$

SOLUTION

$$\label{eq:Given:v} \mbox{Given: v = at + } \frac{b}{t+c} + v_0$$

As only dimensionally identical quantities can be added together or subtracted from each other, each term on R.H.S. has dimensions of L.H.S. i.e., dimensions of velocity.

$$\therefore$$
 [L.H.S.] = [v] = [L¹T⁻¹]

This means,
$$[at] = [v] = [L^{1}T^{-1}]$$

Given, t = time has dimension $[T^1]$

$$\therefore \text{ [a]} = \frac{\left[L^{1}T^{-1}\right]}{\left[t\right]} = \frac{\left[L^{1}T^{-1}\right]}{\left[T^{1}\right]} = \left[L^{1}T^{-2}\right] = \left[L^{1}M^{0}T^{-2}\right]$$

Similarly, $[c] = [t] = [T^1] = [L^0 M^0 T^1]$

$$\therefore \frac{[\mathbf{b}]}{\left[\mathbf{T}^{1}\right]} = [\mathbf{v}] = \left[\mathbf{L}\mathbf{T}^{-1}\right]$$

$$\therefore \ [b] = [L^1 T^{-1}] \times [T^1] = [L^1] = [L^1 M^0 T^0]$$

Exercises | Q 3. (xi) | Page 15

Solve the numerical example.

The length, breadth and thickness of a rectangular sheet of metal are 4.234 m, 1.005 m and 2.01 cm respectively. Give the area and volume of the sheet to correct significant figures.

SOLUTION

Given: I = 4.234 m, b = 1.005 m, t = 2.01 cm = 2.01 x 10⁻² m = 0.0201 m

To find: i. Area of sheet to correct significant figures (A)

ii. Volume of sheet to correct significant figures (V)

Formulae: 1. A = 2(lb + bt + tl)

2. $V = I \times b \times t$

Calculation: From formula (i),

 $A = 2(4.234 \times 1.005 + 1.005 \times 0.0201 + 0.0201 \times 4.234)$

= 2{[anti log(log 4.234 + log1.005) + antilog(log 1.005 + log0.0201) + antilog(log 0.0201 + log 4.234)]}

- = 2{[antilog(0.6267 + 0.0021) + antilog($0.0021 + \overline{2}.3010$) + antilog ($\overline{2}.3010 + 0.6267$)]}
- = 2 {[antilog(0.6288) + antilog $(\overline{2}.3031)$ + antilog $(\overline{2}.9277)$]}
- = 2 [4.254 + 0.02009 + 0.08467]
- = 2 [4.35876]
- $= 8.71752m^2$

In correct significant figure,

$$A = 8.71 \text{ m}^2$$

From formula (ii),

V = 4.234 × 1.005 × 0.0201

- = antilog [log (4.234) + log (1.005) + log (0.0201)]
- = antilog [0.6269 + 0.0021 + 2.3032]
- = antilog [0.6288 + 2.3032]
- = antilog [2.9320]

 $= 0.08551 \text{m}^3$

In correct significant figure (rounding off),

 $V = 0.086 \text{ m}^3$

i. Area of a sheet to correct significant figures is 8.72 m².

ii. ii. Volume of sheet to correct significant figures is 0.086 m³.

Exercises | Q 3. (xii) | Page 15

Solve the numerical example.

If the length of a cylinder is $I = (4.00 \pm 0.001)$ cm, radius $r = (0.0250 \pm 0.001)$ cm and mass $m = (6.25 \pm 0.01)$ g. Calculate the percentage error in the determination of density.

SOLUTION

Given: $I = (4.00 \pm 0.001)$ cm, In order to have same precision, we use, (4.000 ± 0.001) , $r = (0.0250 \pm 0.001)$ cm, In order to have same precision, we use, (0.025 ± 0.001) m = (6.25 ± 0.01) g

To find: percentage error in density

Formulae:

- 1. Relative error in volume, $\frac{\Delta V}{V} = \frac{2\Delta r}{r} + \frac{\Delta l}{l}$ (:: Volume of cylinder, V = $\pi r^{2}l$) 2. Relative error $\frac{\Delta \rho}{\rho} = \frac{\Delta m}{m} + \frac{\Delta V}{V}$ [:: Density (ρ) = $\frac{mass(m)}{volume(v)}$]
- 3. Percentage error = Relative error × 100 %

Calculation: From formulae (i) and (ii),

$$\therefore \frac{\Delta \rho}{\rho} = \frac{\Delta m}{m} + \frac{2\Delta r}{r} + \frac{\Delta l}{l}$$
$$= \frac{0.01}{6.25} + \frac{2(0.001)}{0.025} + \frac{0.001}{4.000}$$
$$= 0.0016 + 0.08 + 0.00025$$
$$= 0.08185$$

% error in density =
$$\frac{\Delta \rho}{\rho} \times 100$$

- = 0.08185 × 100
- = 8.185%

Percentage error in density is 8.185%.

Exercises | Q 3. (xiii) | Page 15

Solve the numerical example.

When the planet Jupiter is at a distance of 824.7 million kilometers from the Earth, its angular diameter is measured to be 35.72" of arc. Calculate the diameter of Jupiter.

SOLUTION

Given: Angular diameter (α) = 35.72" = 35.72" × 4.847 × 10⁻⁶ rad \approx 1.73 × 10⁻⁴ rad Distance from Earth (D) = 824.7 million km = 824.7 × 106 km = 824.7 × 109 m. To find: Diameter of Jupiter (d) Formula: d = α D Calculation: From the formula, d = 1.73 × 10⁻⁴ × 824.7 × 10⁹ = 1.428 × 10⁸ m = 1.428 × 10⁵ km The diameter of Jupiter is 1.428 × 10⁵ km. Exercises | Q 3. (xiv) | Page 15 Solve the numerical example.

 a^4b^3

If the formula for a physical quantity is $X = \frac{c^{1/3}d^{1/2}}{c^{1/3}d^{1/2}}$ and if the percentage error in the measurements of a, b, c and d are 2%, 3%, 3% and 4% respectively. Calculate percentage error in X.

Given: X =
$$\frac{a^4b^3}{c^{1/3}d^{1/2}}$$

Percentage error in a, b, c, d is respectively 2%, 3%, 3% and 4%.

Now, Percentage error in X

$$= \left(4\frac{\Delta a}{a} + 3\frac{\Delta b}{b} + \frac{1}{3}\frac{\Delta c}{c} + \frac{1}{2}\frac{\Delta d}{d}\right) \times 100\%$$
$$= \left[(4 \times 2) + (3 \times 3) + \left(\frac{1}{3} \times 3\right) + \left(\frac{1}{2} \times 4\right)\right] \times 100\%$$

 $= [8 + 9 + 1 + 2] \times 100\% = 20\%$

Exercises | Q 3. (xv) | Page 15

Solve the numerical example.

Write down the number of significant figures in the following: 0.003 m^2 , $0.1250 \text{ gm cm}^{-2}$, $6.4 \times 10^6 \text{ m}$, $1.6 \times 10^{-19} \text{ C}$, $9.1 \times 10^{-31} \text{ kg}$.

SOLUTION

Number	No. of significant figures	Reason
0.003 m ²	1	Ruleno. iii
0.1250 g cm ⁻²	4	Rule no. iv
6.4 × 10 ⁶ m	2	Ruleno.i
1.6 × 10 ⁻¹⁹ C	2	Ruleno.i
9.1 × 10 ⁻³¹ kg	2	Ruleno.i

Exercises | Q 3. (xvi) | Page 15

Solve the numerical example.

The diameter of a sphere is 2.14 cm. Calculate the volume of the sphere to the correct number of significant figures.

SOLUTION

Volume of sphere
$$=\frac{4}{3}\pi r^3$$

 $=\frac{4}{3} \times 3.142 \times \left(\frac{2.14}{2}\right)^3 \dots \left(\because r = \frac{d}{2}\right)$
 $=\frac{4}{3} \times 3.142 \times (1.07)^3$
 $= 1.333 \times 3.142 \times (1.07)^3$
 $= \{\text{antilog [log (1.333) + log(3.142) + 3 log(1.07)]}\}$
 $= \{\text{antilog [0.1249 + 0.4972 + 3 (0.0294)]}\}$
 $= \{\text{antilog [0.1249 + 0.4972 + 3 (0.0294)]}\}$

- = {antilog [0.6221 + 0.0882]}
- = {antilog [0.7103]}
- = 5.133cm³

In multiplication or division, the final result should retain as many significant figures as there are in the original number with the least significant figures.

: Volume in correct significant figures = 5.13 cm³

